

LA-UR-19-23059

Approved for public release; distribution is unlimited.

Title: LANL ARM Benchmarking Efforts

Author(s): Pritchard, Howard Porter Jr.

Intended for: EMC3 day presentation

Issued: 2019-04-04

LANL ARM Benchmarking Efforts

Howard Pritchard (<u>howardp@lanl.gov</u>) EMC3 Day 4/4/19

LA-UR-19-XXXXX

UNCLASSIFIED

Covered today

- Overview of LANL ARM benchmarking efforts
- Mini-app performance
- ASC/IC app performance results
- ARM future technologies investigations

LANL ARM Benchmark efforts

- Institutional Computing (IC) benchmarking team
 - focus on open science applications
- HPC Applications Readiness (AR) team
 - focus on ASC application porting/performance
 - ARM future technologies effort
- Resources
 - HPE Apollo 70 (TX2s 64 cores/node, 2/4 HT per core)
 - Cray XC50's (TX2s 56 cores/node, 4 HT per core)
 - simulators

Microbenchmark Results

NNS

ThunderX2 comparison with Skylake, Broadwell on Darwin

	TX2 (darwin)	BWL	SKL-gold
cores/socket	32 (max 4 HT)	22 (2 HT)	22 (2 HT)
L1 cache/core	32KB I/D (8-way)	32KB I/D (8-way)	32KB I/D (8-way)
L2 cache/core	256KB (8-way)	256 KB (8-way)	1 MB (16-way)
L3 cache/socket	32 MB	33 MB	30.25 MB
#Memory channels/socket	8 DDR4	4 DDR4	6 DDR4
Base clock rate	2.2 GHz	2.2 GHz	2.1 GHz
vector length	128b	256b	512b max

Pagesize 64KB on Darwin ARM nodes

Two ARM partitions – 4tpc and 2tpc configs

Cray ARM systems have 4KB and 2MB pagesizes

Stream triad benchmark performance comparison – per node basis

Using 64KB pages on TX2

Note we're off from reported best stream for TX2 by ~20%.

UNCLASSIFIED

Stream triad benchmark performance comparison – 1 OpenMP thread (normalized to BWL)

NISA

Tinybenchmem benchmark performance comparison – dual read test (random accesses)

block size (bytes)

UNCLASSIFIED

Mini-Apps Performance Characteristics

NNS

Objectives of the mini-app and hopefully later full app performance investigations

- Get a good understanding of current performance limitations of mini-apps on TX2 – focus on single core+HTs and single node performance
- Determine extent to which mini-app kernels can vectorize
- Use Skylake as comparison for scalar and vector performance
- Investigate ability of compilers to generate SVE code for performance critical loops

Mini-apps under consideration

- ❖ SNAP Sn deterministic neutron transport
- Branson Monte Carlo radiation transport
- Laghos
- xkt (EAP "proxy")
- RSbench/Xsbench
- ***** HPCG
- Cloverleaf (maybe tealeaf)

SNAP – Proxy for Partisn

- Sweep algorithm sensitive to performance of caches, memory BW not so important (at least for realistic problems)
- Option to test OpenMP performance
- Crossroads benchmarks
- Sensitive to code generation by compiler for dim3_sweep, particularly the fix-up loop. Important for follow-on SVE code generation studies.
- Cray compiler does particularly well here

NNS

SNAP

- Used Crossroads single node benchmark for runs inh0001t1 for pure MPI runs
- ARM Flang 18.1.4 and 19.0.0 on ARM nodes, -Ofast
- Intel 18.0.3 with flags in Makefile for isnap. Used skylake-gold for comparison with TX2.
- Used –map-by core option for mpirun
- For hybrid MPI/OpenMP runs also set OMP_PLACES=cores OMP_PROC_BIND=close

SNAP – Comparison with Skylake-gold and Broadwell – MPI Only – single node (normalized to BWL)

SNAP – CRAY compiler vs ARM FLANG

NISA

SNAP – OpenMP performance – using those idle HTs

- Used Crossroads inh0001tX (X=1,2,4) single node problem
- Hit turbulence with ARM compilers, ended up using 19.0.0 and using –O3 rather than –Ofast to avoid segfaulting in *inner*
- Hit severe turbulence with Intel compilers, similar segfault traceback but with any optimization level and all available Intel compilers (happened both with/without avx2/avx512 enabled)
- Had success with GNU 8.2.0 on Intel, at the cost of significant loss in base performance

NISA

SNAP – OpenMP performance – using those idle HTs (normalized to SKL-1t)

SNAP – MAP profile (small 1core problem)

INNS

BRANSON – proxy for Jayenne

- For proxy_small.xml, appears to be compute bound
- RND123 not yet optimized for ARMv8
- Lots of time spent in math intrinsics (exp, log, sin, cos)
- If this is a good proxy for real app, somewhat disturbing
- Can compilers, using SVE vectorizer find vectors in this code?
- Used proxy_small.xml for runs, NGROUPS=50
- Branson at db66bf52 on GitHub

BRANSON – Skylake-gold vs TX2

BRANSON – Skylake-gold vs TX2 + armpl (normalized to SKL)

INNS

ASC/IC TX2/Skylake Application Performance Comparison

INNS

VPIC TX2/Skylake-platinum comparison – per node basis

NISA

xRAGE

- Memory BW hungry app that makes ThunderX2 look good
- Weak scaling shaped-charge problem, run on thunder, Cray compilers 8.7.5

xRAGE shaped charge problem: TX2/KNL/HSW performance comparison

INNS

Partisn

- Neutron transport code deterministic SN method
- Sensitive to cache performance, not typically memory bound
- ❖ Vectorizes very well for avx512, NEON

Partisn – Comparison with Skylake-gold and Broadwell – MPI Only – single node (normalized to BWL)

INNSA

Partisn – Compiler Comparison on Cray XC50

NISA

GROMACS

- Uses explicit SIMD instructions via intrinsics. NEON is supported
- Floating point bound (according to GROMACS developers)
- Compilers Intel 18.0.3 on SKL, GCC 8.2 on ARM

GROMACS: 3.3 Million Atom Problem

ARM Future Technologies Effort

INNS

Scalable Vector Extension

- New set of SIMD instructions added to the ARMv-8-A instruction set (Hot Chips 2016)
- Vector length agnostic (VLA), supports VL's from 128 to 2048b. For portability, compilers need to generate VLA code
- 32 Z registers, 16 predicate registers, 1 FFR register (first fault register to handle faults in gather/scatter etc.)
- Predicate registers have unique capabilities (not your Cray J90 bitmask registers)
- ❖ Fujitsu A64FX processor first with SVE 512b VL

Exploring SVE

- ARM compilers can generate SVE instructions: -march=armv8-a+sve
- Cray 9.0 SVE edition compiler can also generate SVE instructions (fixed vector length)
- GNU 8.2 can also generate SVE code
- ARMIE simulator. Available on Darwin. Will use for Marvell/TX4 collab – they want ARMIE traces.
- GEM5 based simulator from ARM, pseudo-A64FX parameter file
- Expect a newer simulator from Marvell soon (good for what if experiments)

NISA

External Collaborations

- Sandia Astra program
- Riken/Sandia ARM collaboration Fiber benchmarks, etc.
- AWE (Tom Deakin, Simon McIntosh-Smith, etc.)
 - simulator effort (they're developing their own, not GEM5)
 - application performance analysis collaboration
- Various vendors

